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ABSTRACT
Umpolung-based strategies play a significant role in organic
synthesis. Particularly important are 1,3-dithiane linchpins, which
serve as convenient acyl anion equivalents. The general synthetic
accessibility and impressive reactivity of 1,3-dithianes have thus
led to widespread application. Since the late 1970s, dithianes have
featured prominently in our program directed toward the synthesis
of complex natural and unnatural products, both for effective union
of advanced fragments and for multicomponent linchpin couplings.
In this Account, we present the evolution of dithiane chemistry in
our laboratory.

The concept of umpolung, first introduced by Wittig in
1921 to describe the inversion of charge,1 was not generally
accepted by the chemical community until Seebach
reintroduced the term in 19742 to describe “dipole inver-
sion” or inversion of reactivity.3 The obvious need for the
term grew out of the pioneering work of Corey and See-
bach on the design and applications of 1,3-dithianes,4,5

which are now well recognized as excellent strategic ele-
ments for the construction of complex natural and un-
natural products6 (Scheme 1). Importantly, improved pro-
tocols for the removal of the dithiane moiety to reinstate

the carbonyl functionality have paralleled the develop-
ment of dithiane reactions.7

Enone Additions
Early in our synthetic program, we were attracted to the
dithiane functionality for simple 1,2-addition to carbonyls,
in conjunction with the construction of members of the
jatrophone class8,9 of diterpene cytotoxic agents (1-3, Fig-
ure 1). The jatrophones, isolated from the extracts of Jat-
ropha gossypiifolia L (Euphorbiaceae) by the late Professor
Kupchan,10 possess an unusual macrocyclic spiroether
skeleton.

We envisioned that a unified approach to members of
the jatrophone family could be developed by taking ad-
vantage of a dithiane-based strategy, involving union of
anion 9 and cyclopentenone 8 (Scheme 2). Dithiane 9 was
to serve both as an acyl ion equivalent and as a masked
carbonyl for a future aldol reaction with aldehyde 7.

When the scheme was put into practice, anion 9 added
smoothly to racemic cyclopentenone 8 in high chemical
yield (95%); removal of the dithiane7b led to ketone 10.
Not unexpectedly, the addition proceeded with poor facial
selectivity (ca. 3:1 in favor of the undesired isomer) and
required redress. In recognition of the allylic nature of the
tertiary hydroxyl, a Mislow-Evans sulfenate-sulfoxide re-
arrangement11 was enlisted to convert 10 to 11, where the
acidic nature of the hydrogen R to the sulfoxide would
permit base-mediated equilibration of the isomers (Scheme
3).
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FIGURE 1. The jatrophone family of natural products.
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After epimerization with 1,8-diazabicyclo[5.4.0]undec-
7-ene (DBU), 11â undergoes a thermal Mislow-Evans
sulfoxide-sulfenate rearrangement with the sulfenate
intercepted with (EtO)3P to furnish 10â as a single isomer.
Spirofuranone ring generation, refunctionalization, and
macrocyclization of 5 (Scheme 2), the latter an early
example of an intramolecular Mukaiyama aldol reaction,12

then led to the first total synthesis of jatrophone (1). A
similar strategy provided access to the hydroxyjatrophones
A and B (2 and 3).

Having achieved success with the umpolung tactic, we
turned to the total synthesis of (-)-bertyadionol (12),13 a
macrocyclic cytotoxic diterpene.14 Again we envisioned
1,2-addition of a dithiane to an enone. In this case, a more
complex dithiane (e.g., 15) was employed to permit a high-
ly convergent strategy (Scheme 4). The addition regiose-
lectivity, with respect to both the unsaturated ketone and

the vinylogous dithiane anion, was however a question
of some concern.

In the event, dithiane 15, readily available from (-)-
cis-chrysanthemic acid, was first treated with NaH in
tetrahydrofuran (THF) (0 °C) to generate the keto phos-
phonate anion, followed by addition of n-BuLi and N,N,
N,N-tetramethyl-1,2-ethylenediamine (TMEDA) at -23 °C
to furnish the dianion (Scheme 5). Addition to enone 14
furnished the 1,2-adduct, which upon acidic hydrolysis
led to alcohol 17. Complete regiocontrol at both the
dithiane carbon and the enone carbonyl was observed.

Subsequent manipulations, including the use of the
Stork-Nicolaou macrocyclization15 and stereoselective
methylation at C(2) furnished macrocycle (-)-18. At this
juncture, all that remained was the seemingly simple task
of removing the benzoate ester and dithiane moieties.

Scheme 2

Scheme 4

Scheme 5

Scheme 3
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These transformations however proved challenging, par-
ticularly with respect to removal of the dithiane; indeed,
all attempts exploiting most, if not all, of the known
protocols7 were unsuccessful, most likely due to the
vinylogous R relationship of the dithiane and the cyclo-
propyl ring, which under the acidic conditions raised the
specter of cyclopropyl-carbonyl rearrangements. Eventu-
ally, we developed a hydrolysis protocol, involving sa-
ponification of the benzoate, followed by oxidation of the
dithiane with m-chloroperoxybenzoic acid (m-CPBA)16 to
furnish a mixture of monosulfoxides, which permitted use
of a “Pummerer-like” hydrolysis process to furnish (-)-
bertyadionol (12).

Dithiane Couplings with Epoxides, r-Siloxy
Halides, and r-Siloxy Aldehydes
Encouraged by the robust reactivity of the dithiane anion,
we next explored the reactions of dithiane anions with
terminal epoxides, R-siloxy primary halides, and R-siloxy
aldehydes as alternatives to the aldol reaction to gain
access to the recurring 1,3-oxygenation pattern found in
many polyketide natural products (Figure 2). Synthetic
targets at the time included FK506,17,18 rapamycin,19,20 and
discodermolide,21,22 each reported to possess significant
immunosuppressant activity. 23

The advantages of this synthetic tactic in relation to
the classical aldol reaction include the following: (1) the
resultant carbonyl group is masked, circumventing a
separate protection step; (2) the aldol hydroxyl can be
either protected or unprotected via appropriate choice of
electrophile; (3) the configuration of the â-hydroxyl is
secured prior to the coupling event; (4) the reaction is not

reversible; (5) carbonyl self-condensation is avoided.24

Each of the dithiane couplings illustrated in Figure 2 have
been employed with considerable success in our immu-
nosuppressant synthetic venture for the union of ad-
vanced fragments (Figure 3).24 Importantly, these unions
can be carried out on multigram scale.

The combination of a dithiane with a phenyl sulfone
[e.g., (+)-22], as employed in our rapamycin and 27-de-
methoxyrapamycin syntheses, provided us with our first
insight on the potential of dithiane chemistry for bidirec-
tional fragment coupling (vide infra). This linchpin not
only served as a means to append two large fragments
but in addition provided a facile, stereoselective entry to
trisubstituted olefins via a combination of sulfone and
enol-triflate chemistry (Scheme 6). The latter tactic, term-
ed by us σ-bond construction of trisubstituted olefins,24

involves chemoselective lithiation of the sulfone carbon
followed by reaction with an aldehyde to produce a â-
hydroxy sulfone. Oxidation to the corresponding ketone,
followed by reductive removal of the sulfone, regio- and
stereoselective enolate formation, triflation, and subse-
quent insertion of an alkyl cuprate into the C-O bond,
affords the trisubstituted olefinic dithiane in a highly
stereocontrolled manner.25

FIGURE 2. Construction of aldol linkages via dithiane couplings.

FIGURE 3. Notable dithiane couplings during our immunosuppres-
sant program.
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Difficulties Encountered with the Dithiane
Tactic: First-Generation FK506 and Calyculin
Synthetic Strategies
We have found that the best means to lithiate dithianes
involves treatment with t-BuLi in 10% hexamethylphos-
phoramide (HMPA)/THF,26 conditions first introduced by
Williams.27 DMPU [1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-
pyrimidinone] can be employed as a replacement for
HMPA; however, yields are often inferior. Although these
conditions are our method of first choice, the lithiation
and reactions of complex dithianes are substrate-specific.
Three difficult examples will be presented.

The first arose during our FK506 formal synthesis.28

Central to the initial plan was the proposed union of di-
thiane (-)-19 with epoxide (+)-33 (Scheme 7). Unfortu-
nately, despite successful lithiation of (-)-19 (t-BuLi, 10%
HMPA/THF; 90% deuterium incorporation), epoxide (+)-
33 proved unreactive.29 This event led us to explore the
union of (-)-19 with the corresponding R-alkoxy iodide
(-)-20 (Figure 3). Pleasingly, iodide (-)-20 was a most
effective coupling partner, furnishing the C(10)-C(34)
fragment of FK506 in 82% yield and, in turn, a formal total
synthesis of FK506.28

Calyculins A and B: Development of a Viable
Dithiane Alternative
The second difficult case arose with the calyculins, highly
selective serine-threonine phosphatase inhibitors pos-
sessing a striking array of stereochemical and structural
elements.30 Two strategic dithiane-epoxide couplings

were envisioned.31 The first entailed union of dithiane 36
with epoxide 37 (Scheme 8). Second, construction of the
C(13-25) spiroketal would rely on the alkylation of
dithiane 39 with epoxide 40.

When put to practice, all attempts to metalate (+)-39
employing the standard protocol (t-BuLi, 10% HMPA/
THF), or for that matter, any of a variety of strong bases
and additives, failed to furnish the desired anion (Scheme
9).

Cognizant that protecting groups often play a role in
metalation processes,6c,32 we prepared three related
dithianes. Again, metalation with a variety of strong bases
and solvent systems proved modest at best. We reasoned
that the lack of reactivity was most likely due to the
interaction of the dithiane C-S σ* orbital, known to play
a critical stereoelectronic role in promoting dithiane acid-
ity,33 with the π system of the olefin. That is, the two inter-
converting chairlike conformations (41 or 42; Figure 4),
induced by the geminal dimethyl Thorpe-Ingold effect34

in (+)-39, would lead to close proximity of the C-S σ*
dithiane orbital and the olefin π system, an interaction
that would reduce the acidity of the dithiane hydrogen.

Scheme 6

Scheme 8

Scheme 9
Scheme 7
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To circumvent this difficulty dithiane (-)-43, devoid
of the suspect olefin, was successfully lithiated; addition
of epoxide (+)-40 yielded alcohol (-)-44 in 81% yield
(Scheme 10). Subsequent manipulations then led to the
requisite calyculin spiroketal (+)-37.

The second dithiane tactic proved even more difficult.
The plan called for alkylation of (+)-36 with an advanced
epoxide (45a). Dithiane (+)-36 could be efficiently lithi-
ated and was shown to be a competent nucleophile by
efficient reaction with a simple epoxide (47). However,
alkylation with any of a series of advanced epoxides (45a-
d) failed to occur (Scheme 11). The steric encumbrance
around the epoxide again appeared to be the problem.

We therefore turned to a vinyl anion synthetic equiva-
lent of the dithiane, which we reasoned would be more

reactive and possibly less sterically encumbered. Success
was in hand upon the generation of the mixed cuprate36

from vinyl bromide (+)-49 followed by reaction with epox-
ide (+)-37; the yield of the coupled product was 83%
(Scheme 12). Protection of the resultant hydroxyl and oxi-
dative cleavage of the olefin then afforded ketone (+)-51,
which permitted completion of the calyculin A and B total
syntheses.31 Thus, a viable equivalent to the dithiane linch-
pin tactic, in cases of severe steric encumbrance at the
electrophile, is use of a vinyl anion equivalent.

The Spongistatins: Multicomponent Couplings
with Silyl Dithianes
In 1994, Tietze and co-workers37 reported the symmetrical
bis-alkylation of trimethylsilyldithianes with simple ep-
oxides. This innovative result suggested the possibility of
effecting unsymmetrical alkylations as a new approach to
the bidirectional construction of 1,3-polyols;38 this indeed
proved to be the case. In 1997, we reported that lithiation
of silyl dithianes 52 with t-BuLi in diethyl ether (Scheme
13), followed by alkylation with a simple epoxide, results
in an intermediate oxyanion. Treatment with HMPA trig-
gers a 1,4-Brook rearrangement39,40 and thereby the gen-
eration of a new reactive dithiane anion. Addition of a se-
cond, different epoxide furnishes a differentially silyl-pro-
tected 1,5-diol.41,42 From a strategic sense, the location of
the silyl protecting group can be orchestrated simply by
the order of the epoxide additions.43 Extension of this
synthetic tactic to other “second” electrophiles such as

FIGURE 4. Conformation 41 disfavors metalation given the axial
proton;35 conformation 42 permits donation of electron density from
the olefin π orbital to the C-S σ* orbital, thereby reducing the role
of the σ* orbital in promoting acidity.

Scheme 10

Scheme 11 Scheme 13

Scheme 12
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alkyl bromides and aldehydes has been demonstrated in
our laboratory.41

Concurrent with the development of the multiple com-
ponent coupling tactic, we became intrigued with the
spongistatins, extraordinarily potent, architecturally com-
plex tumor cell growth inhibitory macrolides.44 The ex-
treme scarcity of the spongistatins, in conjunction with
both their novel architecture and their potential benefit
to cancer chemotherapy, led us to undertake their synthe-
sis (Scheme 14).45 A central feature of this venture entailed
the multicomponent linchpin tactic for the construction
of the acyclic fragments of the AB and CD spiroketals.

As illustrated in Scheme 15, this tactic has proven to
be highly effective in what is now a second-generation
gram-scale approach to these important targets.46 Notably,
both multicomponent reactions can be run on a 10 g scale
on way to the ABCD advanced fragment (Scheme 14).

An Alternate Dithiane Lithiation Procedure
Dithianes resistant to metalation can be lithiated via the
Brook rearrangement in appropriate cases. For example,
although dithiane (+)-70 could not be metalated due to
competing deprotonation of the more acidic naphthyl pro-
tons (Scheme 16), alkylation of the requisite epoxide (-)-
62 with silyl dithiane 63, followed by solvent-controlled

Scheme 14

Scheme 15

Scheme 16

Evolution of Dithiane-Based Strategies Smith and Adams

370 ACCOUNTS OF CHEMICAL RESEARCH / VOL. 37, NO. 6, 2004



Brook rearrangement effectively generated the desired
lithiated dithiane as demonstrated by deuterium incor-
poration.42

In a second case, wherein dithiane (+)-73 failed to
undergo lithiation (Scheme 17), the lithium alkoxide of
silyl dithiane (+)-74, prepared from 63 and (-)-65, was
readily generated. Brook rearrangement triggered by
HMPA then permitted alkylation with epoxide (-)-67 to
afford (+)-69 in 80% yield.42

The Mycoticins: A Remarkable One-Pot
Five-Component Coupling
A more ambitious multicomponent union of silyl dithianes
and epoxides was achieved in our formal total synthesis
of the antifungal agent mycoticin A.47,48 Here we envi-
sioned construction of the C(16-28) polyol portion em-
ploying a “one-pot” five-component coupling tactic
(Scheme 18).

This transformation entailed generation of 2.5 equiv of
lithiated tert-butyldimethylsilyl-dithiane 66, which is
reacted with 2.3 equiv of (-)-benzyl glycidyl ether (Scheme
19). After the initial alkylation is complete, addition of
HMPA to promote the Brook rearrangement, followed by
1.0 equiv of bis-epoxide (-)-77, furnished (+)-78 in 59%
yield, wherein four new carbon-carbon σ bonds were
established in one flask! Seven additional steps where then
required to arrive at (+)-76, an intermediate in the Schrei-
ber total synthesis of mycoticin A.48,49 The overall sequence
required eight steps, five fewer than the Schreiber route.

The Reaction of Dithianes with Vinyl Epoxides
To expand the scope of the dithiane linchpin, we next
examined vinyl epoxides as the electrophile, which offer
both SN2 and SN2′ reactivity (Scheme 20). Opportunely,

simple adjustment of the steric bulk at the dithiane carbon
permits selective reaction via either manifold (Scheme
21).50 Less sterically encumbered dithiane anions afford

Scheme 19

Scheme 20

Scheme 21

Scheme 17

Scheme 18

Evolution of Dithiane-Based Strategies Smith and Adams

VOL. 37, NO. 6, 2004 / ACCOUNTS OF CHEMICAL RESEARCH 371



exclusively the product of SN2 addition, whereas with
large substituents, the SN2′ process predominates. Further
investigation with 1-substitued vinyl epoxides (80 and
82) revealed that the SN2′ process occurs exclusively
by syn addition, albeit with modest efficiency (Scheme
22).50

Rimocidinolide: A Showcase for the SN2/SN2′
Synthetic Tactic
The impressive control over the site of nucleophilic attack
obtained with vinyl epoxides, coupled with the utility of
silyl dithianes as linchpins, led us to rimocidinolide,51 the
aglycone of the potent antifungal agent rimocidin (Scheme
23).52 To access the southern perimeter of this macrolide,
we envisioned a series of SN2 and SN2′ dithiane couplings
beginning with the enantiomers of vinyl epoxide 93.

For epoxide (-)-87, SN2′ addition of the anion of tri-
isopropylsilyl (TIPS) dithiane (79) to epoxide (+)-93, fol-
lowed in turn by concommitant removal of the TBS group
and acetonide formation, fluoride-mediated TIPS removal,
and olefin reduction afforded (+)-95 in excellent yield. The
resulting dithiane was then lithiated and treated with
epoxide (+)-89 to furnish (-)-96. Epoxide (+)-89 was also
prepared from vinyl epoxide (+)-93 via SN2 addition of
phenyldithiane, removal of the TBS protecting group, and
Fraser-Reid epoxide formation.53 Subsequent manipula-
tions generated epoxide (-)-87 (Scheme 24). Importantly,
both the SN2 and SN2′ processes proceeded with excellent
selectivity and good overall efficiency.

Construction of advanced epoxide (-)-88 (Scheme 25)
began with the enantiomer of vinyl epoxide (+)-93. Reac-
tion with lithio-1,3-dithiane afforded alcohol (-)-91, which
upon silylation and lithiation, coupled in an SN2 fashion
with benzyl glycidyl ether to provide alcohol (-)-98, the
progenitor of epoxide (-)-88.

The strategic union of (-)-87 and (-)-88 was then
achieved in 56% yield via our multicomponent coupling
protocol and in turn completion of the C(1-18) fragment
[(+)-85] for incorporation into rimocidinolide (Scheme
26).54

The Tedanolides: Development of a New
Bidirectional Linchpin
To extend the concept of bidirectional dithiane linchpins
with complementary nucleophilic functionalities, we se-

Scheme 23

Scheme 24

Scheme 22
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lected as synthetic targets (+)-tedanolide (99) and (+)-
13-deoxytedanolide (100), isolated respectively by Schmitz
in 198455 and by Fusetani in 199156 (Scheme 27). Like rap-
amycin and 27-demethoxyrapamycin, these extremely
potent antitumor agents possess a trisubstituted olefin,
which appeared well suited for bidirectional construction,
albeit now employing a dithiane and a vinyl anion
equivalent (e.g., 103) instead of the phenyl sulfone
employed earlier. From the outset, we envisioned a
strategy that would lead to both (+)-tedanolide and (+)-
13-deoxytedanolide comprised of aldehyde 102, linchpin
103, and epoxide 104 or iodide 105, respectively, for (+)-
tedanolide (99) and (+)-13-deoxytedanolide (100).

Linchpin (-)-103 was prepared in a straightforward
fashion from Roche’s ester (+)-106 as outlined in Scheme

28. With the bidirectional linchpin (-)-103 available, we
employed first the vinyl iodide. Metal-halogen exchange,
without interference from the dithiane, followed by

addition to aldehyde (+)-102 furnished allylic alcohol (-)-
109 in good yield (Scheme 29). Best selectivity was ob-
tained with the mixed solvent system toluene/ether (ca.
12:1).

Scheme 25

Scheme 26

Scheme 27

Scheme 28
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Total Synthesis of 13-Deoxytedanolide
Our strategy for (+)-tedanolide (99) next called for union
of dithiane (-)-109 and epoxide (+)-104. Although the
anion of dithiane (-)-111, obtained by TIPS protection
of (-)-109 and metalation, proved to be a competent
nucleophile [e.g., reacted with (+)-benzyl glycidyl ether;
78% yield],57 no reaction occurred with advanced epoxide
(+)-104. Presumably the steric environment of the ep-
oxide, as observed in our FK506 and calyculin programs,
prevented addition (Scheme 30).

We reasoned that changing the aggregation state of
either the lithiated dithiane or a closely related congener
might increase the reactivity and thereby negate a major
strategy redesign. After considerable experimentation,
generation of the trianion of (-)-113 via removal of the
acetonide protecting group and treatment with 3 equiv
of t-BuLi, followed by addition of epoxide (+)-104 in a
low-polarity solvent system, led to (-)-114, possessing the
complete carbon skeleton of the tedanolides (Scheme 31).
Although the 52% yield might have proven acceptable for
material advancement, the reaction required a large excess

(7 equiv) of the valuable advanced epoxide (+)-104.58 We
therefore explored an alkyl iodide as the electrophilic
partner, in a fashion similar to our FK506/rapamycin
syntheses. The initial target would now be (+)-13-deoxy-
tedanolide. Pleasingly, the dianion of (-)-115, possessing
a SEM [2-(TMS)ethoxymethyl] moiety at the C(2)-hydroxyl,
reacted with excellent efficiency (75% yield), requiring only
1.1 equiv of iodide (+)-105.

Having achieved the critical union, and thereby the
complete carbon backbone of (+)-13-deoxytedanolide, we
next addressed oxidation of the primary hydroxyl to the
requisite seco-acid for macrocyclization. We were, of
course, critically aware of the potential liability of the
dithiane moiety to oxidation.59 Indeed, all attempts to
oxidize (-)-116, or the readily available aldehyde (Parikh-
Doering oxidation), to the carboxylic acid employing a
variety of conditions failed. A new oxidation method was
thus required. We were drawn by our colleague, Professor
Marisa Kozlowski, to the Evans-Tishchenko reaction,60 at
the time employed exclusively for directed reductions of
â-hydroxy ketones. This reaction of course could also be
viewed as a means to convert a sacrificial â-hydroxy
ketone to the corresponding ester attached to the reduced
carbonyl. That is, in addition to achieving reduction of
the ketone to a hydroxyl in the Evans-Tishchenko reac-
tion, the aldehyde is converted to an attached carboxylate
(Figure 5).

Pleasingly, when put into practice the SmI2-promoted61

oxidation of aldehydes to esters proceeded efficiently, not

Scheme 29

Scheme 30

Scheme 31

FIGURE 5. Transition state structure for the Evans-Tishchenko
reaction proposed by Evans and Hoveyda.60
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only in the presence of sulfur but also in the presence of
other electron-rich atoms, including P, N, Se, and Sn.62

The successful oxidation of (-)-116 exploiting this tactic
led to seco-ester 120 in 75% yield (two steps) and
ultimately to the first total synthesis of (+)-13-deoxy-
tedanolide63 (Scheme 32).

Summary
Since the late 1970s, we have employed dithiane-based
strategies for the union of advanced intermediates to
achieve syntheses of architecturally complex natural
products. The tactic both is efficient and leads to highly
convergent synthetic strategies. More recently, we have
demonstrated that dithianes are effective linchpins both
for efficient union with vinyl epoxides and for multicom-
ponent couplings involving three, four, and even five
components, achievable in a single flask. Studies to extend
and expand the utility of dithiane-based synthetic strate-
gies continue in our laboratory and will be reported in
due course.
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Törmakangas, O. P.; Koskinen, A. M. P. The Tishchenko reaction
and its modifications in organic synthesis. Recent Res. Dev. Org.
Chem. 2001, 5, 225-255.

(61) (a) Namy, J. L.; Souppe, J.; Collin, J.; Kagan, H. B. New prepara-
tions of lanthanide alkoxides and their catalytic activity in Meer-
wein-Ponndorf-Verley-Oppenauer reactions. J. Org. Chem. 1984,
49, 2045-2049. (b) Molander, G. A.; Harris, C. R. Sequencing
Reactions with Samarium(II) Iodide. Chem. Rev. 1996, 96, 307-
338.

(62) Smith, A. B., III; Lee, D.; Adams, C. M., Kozlowski, M. C. SmI2-
Promoted Oxidation of Aldehydes in the Presence of Electron-
Rich Heteroatoms. Org. Lett. 2002, 4, 4539-4541.

(63) Smith, A. B., III; Adams, C. A.; Barbosa, S. A. L.; Degnan, A. P.
Total Synthesis of (+)-13-Deoxytedanolide. J. Am. Chem. Soc.
2003, 125, 350-351.

AR030245R

Evolution of Dithiane-Based Strategies Smith and Adams

VOL. 37, NO. 6, 2004 / ACCOUNTS OF CHEMICAL RESEARCH 377


